

Stress - asthma relationship in children

Seija Sandberg

University College London

Why concern about stress?

Growing evidence that psychosocial stress

- contributes to development of wheezing illnesses and asthma especially in early childhood
- predicts greater illness severidity in children who already have asthma

Bloomberg & Chen (2005), *Immunol Allergy Clin N Amer, 25: 83-105* Chen et al (2006), *J Allergy Clin Immunol, 117: 1014 – 20* Chida et al (2008), *Psychosom Med, 70: 102 -16* Kozyrskyj et al (2008), *Am J Respir Crit Care Med, 177: 142-7* Turyk et al (2008), *Pediatr Allergy Immunol, 19: 255-63*

UCL

Childhood asthma – characteristics Childhood stress – characteristics Biology of atopy / allergy / asthma Biological stress mechanisms Contribution of stress on

- development of atopy/allergy phenotype
- manifestation of asthma
- course of existing asthma

(Differential effects of stress on children with asthma compared with healthy children)

Early life stress and risk of asthma Summary/conclusions

Is a complex, coordinated, multi system, multi cellular, inflammatory disorder

Manifests with repeated, variable, episodic attacks of breathlessness, cough & wheeze, occurring secondary to broncho-constriction in the setting of airway hyper responsiveness & mucous hyper secretion

Its development requires interaction between environment & genetic susceptibility

Asthma

Commonest chronic disease in childhood 11-14% of school-age children in W Europe affected ¹

Remains a serious health problem, despite effective pharmacological therapies

 Almost 30-fold between-country variation in prevalence, urbanised & more westernised countries with highest rates
 UK, Ireland, NZ, Australia, USA, Canada, some L-A countries ²

 Exposure to urbanised way of life does not explain all between & within country differences

¹ Pearce et al (2007), *Thorax, 6*2: 758-766 ² Asher et al (2006), *Lancet, 368*: 733-743

Atopic vs. Non-atopic Asthma

UCL

Most children with asthma have history of atopy/allergy¹

Atopic/allergic asthma

the dominant form of childhood asthma in affluent communities, but far less common in poor communities²

Non-atopic/non-allergic (intrinsic) asthma

predominant form of childhood asthma in poor communities of the tropics (S-Am, Africa)³ & rural China⁴

(often associated with helminth infections & bronchiolitis)
Helminth infestations inversely associated with both allergies & asthma in low income populatons

¹ Robinson (2009), *Clin Exper Allergy, 39, 1314-1323* ² Weinmayr et al (2007), *Am J Respir Crit Care Med, 176: 565-74* ³ Leonardi-Bee et *al (2006), Am J Respir Crit Care Med, 174, 514-23* ⁴ Palmer et al (2002), *Am j Respir Crit Care Med, 165, 1489-93*

UCL

Stress, stressor, stress reaction

StressorAny intrusion into child's
normal physical / psychosocial life experiences
that acutely or chronically unbalancesStressphysiological or psychological equilibrium,
threatens security or distorts
physical / psychological growth & development

and

Stress reaction

the psychophysiological consequences of such intrusion / distortion

Seija Sandberg/.IASA2010

Types of child stress

UCL

Acute stress (negative life events)

Episodic stress (e.g. exams)

Chronic stress

Seija Sandberg/.IASA2010

Life events to children

UCL

Majority involve important social relationships family friends and relate to the child's immediate environment home school

Fewer

Can be seen as unpredictable 'acts of fate' major traumatic incidents sudden loss of a close person

The term Contextual Threat refers to the level of threat caused or implied by a life event to an average child/adolescent of the same age, sex & biographical characteristics as those of the young person in question

It is simultaneously an objective & personalised measure

'Contextual positive impact' is defined along similar principles

UCL

Real life change: major alteration in life circumstances e.g., death of parent; move to another city or country

Threat mainly cognitive

Event drastically changes child's perception of themselves/ Of other people in a way that presents threat to child's Self-esteem, or reduces perceived sense of security

Combination of real life change & cognitive threat e.g., parents' marital separation

Sandberg et al, (1993), JCPP, 34: 879-897

Seija Sandberg/ IASA 2010

UCL

Chronic stress in children usually stems from enduring adverse circumstances such as unsafe environment and socio-economic deprivation, parental unemployment or illness, and family discord or criminality

Seija Sandberg/ IASA2010

Acute life events & chronic adversity

Negative life events more common in children who also suffer from chronic psychosocial adversities

Sandberg et al, JCPP 1993, 34: 879-97; Lancet 2000, 356:982-87

Atopic (allergic) asthma chronic inflammatory disorder, characterised by T-helper type 2 (Th2) immune response, results from their inappropriate responses to common environmental proteins termed allergens

May results from deficiency of regulatory T cells (Treg) that suppress potentially harmful immune responses¹

> Amongst the various environmental factors, psychosocial stress proposed as an important agent contributing to the function of regulatory T cells

¹ Robinson DS (2009), Clin Exper Allergy, 39, 1314-23

The Two Survival Mechanisms of Humans

T-helper 2 (Th2) immune response and acute stress response

Have they joined together and begun to work against us?

From Parasites to Allergy

Le Souef et al (2006), Eur Respir J, 28,1258-63

Seija Sandberg/ IASA2010

From Parasites to Allergy

From Parasites to Allergy

Genes and the Th2 Pathway

The same genes are involved in both the immunology of:

 increased host protection from parasites and
 increased prevalence of allergic disease

Th2 responses are thought to have evolved in mammals to resist infection by parasites, particularly helminths

The genetic tendency to mount strong Th2 responses may have become a liability causing allergy rather than defending against parasites

The genetic tendency to mount strong Th2 responses may have become a liability causing allergy rather than defending against parasites

The Acute Stress Response

UCL

SAM (Sympathetic Adrenal Medullary axis)

Adrenal Medulla (Sympathetic Nervous System)

Epinephrine & Norepinephrine

Rapid activation

Prepares the body for sudden response (fight or flight)

Regulate innate & adaptive immune systems through binding to beta-adrenergic receptors on leukocytes

HPA (Hypothalamic-Pituitary-**Adrenal axis) Adrenal Cortex** (Zona Fasiculata) Cortisol Slow activation Restores homeostasis after severe physical trauma or stress Adrenal **Regulate innate & adaptive** Gland immune systems through binding to glucocorticoid receptors on leukocytes

Acute Stress on the HPA Axis

Seija Sandberg/ IASA2010

Involves the activation of SAM & HPA axes

Immune, metabolic and neural defensive biological responses, important for short-term response to stress, produce **long-term damage** if not eventually terminated

Allostatic Load

Potential detrimental cost to such accommodation – wear & tear from chronic underactivity/overactivity of the allostatic system

McEwen BS (1998), NEJM 38:171-179

Enhances Th2 cytokine production

(Th2 activate humoral immunity & exacerbate allergy)

Suppresses Th1 cytokine production

(Th1 activate cellular immunity to provide defence against infections & neoplastic diseases)

Schmidt et al (2010), Brain Beh Immun, in press

Contribution of stress to development of atopy/allergy phenotype

The Two Survival Mechanisms of Humans

Have they joined together and begun to work against us?

Expression of allergy in a person with a genetic predisposition to allergy

Th2-bias and Immune Dysregulation

Diagram re-drawn according to Georas et al (2005), Eur Respir J, 26:1119-37

Contribution of stress to manifestation of asthma

Diagram by Priftis KN et al (2009) Allergy, 64, 18-31

Early caregiver stress – wheeze in 1st yr

Caregiver stress in first few months predicted multiple wheeze in 1st year in predisposed children RR=1.4 (95% CI 1.1-1.9)

Early stress, onset of asthma by 3 yrs

Parental stress together with early parenting difficulties predict onset of asthma in those genetically at risk. The asthma risk greatly increased in the context of frequent infections in 1st year & elevated serum IgE at 6 months.

Early parental stress – asthma at 6-8 yrs

Early parental stress and parenting difficulties doubled the risk of asthma by age 6-8 yrs

Seija Sandberg/ IASA2010

Ŵ

Evidence: Stress and risk of atopic eczema

Prevalence of atopic eczema in children aged 4 years

Bockelbrink et al (2006), Allergy, 61: 1397-1402

Early behaviour problems precede asthma in children with atopy

Age 3 behaviour problems (markers of stress) more common in children with atopic dermatitis who developed asthma by age 4½ years, and often preceded onset of asthma

Seija Sandberg/ IASA2010

Behaviour problems, family functioning, late onset (by age 5) wheeze

Behaviour problems age 3 &

poor family functioning

- low expressiveness
- Iow cohesion,

high conflict
 predict wheeze by age 5

A model of how Stress may influence Asthma

Stress Hypothalamic Sympathetic -Pituitarynervous Adrenal system axis (HPA) Immune imbalance (Th1 😂 Th2) Asthma / Allergic disease

Seija Sandberg/ IASA2010

Mechanisms of effects

Caregiver stress early in life associated with atopic immune profile in young children genetically predisposed to atopy / asthma*

Early 'behaviour' problems markers of emotional dysregulation, and of stress**

Emotional dysregulation reflects wider physiological dysregulation indicating a common genetic vulnerability with asthma***

* Wright et al (2004), J Allergy Clin Immunol, 113, 1051-7

- * Bockelbrink et al (2006), Allergy, 61, 1397-1402
- ** Stevenson (2003), *Psychosom Med, 65, 971-5*

*** Mrazek (2003). Child Adol Clin N Am, 12, 459-71

Contribution of stress to the course of existing asthma

Glasgow study

UCL

Design & Methods

- □ Prospective follow-up 18/12
- **Clinical sample**
- □ N= 90
- **Age 6 -13 yr**
- Chronic asthma
- moderate to severe
- preventative & rescue medication

Outcome measures

- **Repeat measurement** of
- life events
- chronic stress by Child & Parent interviews (PACE) ¹

Asthma monitoring

- independent
- continuous
- daily diaries
- peak flows

Risk of asthma attacks following severe events – effect of ongoing chronic stress

Severe event risk of new attack in coming weeks

Risk influenced by chronic stress (dynamic logistic regression)

Severe events: Immediate & delayed effects

* low / medium chronic stress (N=60)

Use of statistical methods capable of examining short time lags showed that severe life events increase immediate risk of new asthma attack also in the low-medium chronic stress group, with a another rise 5-7 weeks later (Cox' regression)

Emotional problems & stress-asthma relationship

Anxiety/depression further increased risk of new asthma attack following severe life event – but only in the absence of chronic stress

Oppositional behaviour and stress-asthma relationship

In conditions of high chronic stress, oppositional/rebellious behaviour protected against new asthma attack following severe life event

Sandberg et al (2003), Eur Child Adol Psychiatry, 12, S2: 230

Summary: Glasgow study

- Severely negative life events increase the risk of children's asthma attacks immediately and over the coming weeks
- High chronic stress magnifies the risk associated with severe events
- Emotional problems further increase the risk
- Minor rebelliousness is protective when chronic stress is high
- In the absence of high chronic stress, positive life event occurring in close proximity to severe event protects against the increased risk*

Sandberg et al, *Lancet, 2000, 356: 982-7; Thorax, 2004, 59: 1046-51; Acta Paed, 2002: 91, 152-158; Eur Child Adol Psych, 2003: 12 S2, 230* *(data not shown in this presentation)

Possible explanation: Stress is not evenly shared

Depressed children with asthma

 Children with asthma and depressive symptoms manifest vagal bias when emotionally stressed

Those with depressive symptoms and poorer lung function (FEV₁<80%) manifest greater airway resistance

An alternative hypothesis linking stress, neuroendocrine and immune function with allergic disease

Asthma patients show variable response to treatment because of **acquired steroid resistance** induced by chronic inflammation or immune activation

Possible reason: prolonged activation of SAM & HPA axes caused by chronic stress results in down regulation of Glucocorticoid Receptor expression or function

Why does early life stress increase risk of asthma?

When and how does it start?

Problems with HPA function and its consequences on the immune system start *in utero* and continue to develop in early life

Neuroendocrine Axis in Pregnancy

Seija Sandberg/ IASA2010

From early stress to allergy

Early life interactions between allergens and Th-cells determine whether a Th2-biased response emerges

Epidemiological evidence: The **critical time period** for establishment of allergy and asthma is between **conception and 3 years** of age

In genetically predisposed individuals, environmental factors and stress may interact resulting in more severe asthma phenotypes which last into adulthood

Turner SW & Devereux G (2007), Clin Exper Allergy; 37:163-165

LOU

Heritable changes in gene expression that occur without directly altering DNA sequence

Most commonly regulated by direct methylation or by post-translational modifications of histones

Transcription factor binds to Cytosine residues in the DNA to stimulate or suppress transcription

A mutation of CG to TA prevents binding of the transcription factor to DNA and inhibits transcription

Epigenetic methylation of the Cytosine residues prevents binding of the transcription factor to DNA and inhibits transcription

UCL

Epigenetic changes:

• heritable changes in gene expression that occur without directly altering DNA sequence^{1,2,5}

 cytokine gene regulation via methylation & acetylation of histones (resulting in silencing the Th1 gene)²

• may occur prenatally or neonatally and influence the phenotype throughout life span^{1,4,5}

 enable trans-generational inheritance of allergy to offspring or offspring's offspring^{3,4}

E.g., a grandmother smoking while pregnant may increase the risk of asthma in her grandchild³

1Roth et al (2009), *Biol Psychiatry*, *65*: 760-769 2 Ansel et al (2003), Nature Immunol, 4: 616-623 3 Li et al (2005), *Chest, 127*: 1232-`1241 ⁴Prescott SL & Clifton V (2009), Curr OpinClin Immunol, 9, 417-26 ⁵Breton et al (2009), Am J Crit Care Med, 180, 462-467

Summary 1

In children genetically at risk

- early caregiver stress and
- parenting difficulties
- predict multiple wheeze in 1st year
- onset of asthma by age 3
- occurrence of asthma at early school age

Summary 2

Early 'behaviour' problems

- precede onset of asthma in young children with atopy
- together with family problems predict lateonset wheeze
- are possibly expressions of stress
- reflect wider physiological dysregulation interacting with genetic vulnerability

In children with chronic asthma

- severely negative life events increase risk of new exacerbations immediately afterwards and in coming weeks
- simultaneous chronic stress magnifies the risk

In children with asthma,

high chronic stress associated with

- heightened production of TH2 cytokines
- higher eosinophil counts
- but has opposite effect in healthy children

Chronic stress

- alters the properties of genes responsible for fighting infection and keeping airways open
- makes usual asthma medications less effective
- may affect other biological systems, e.g. contribute to hypoactive HPA-axis

Gene-environment interactions

may explain why stress affects the immune system differently in children with asthma compared with healthy children

Epigenetic inheritance

- likely to apply to atopy & asthma
- as well as to stress

Acknowledgements

UCL

- Sara Ahola, PhD, University of Jyväskylä
- Clive R Hillary, PhD, University of Glasgow
- Salme Järvenpää, MSci, University of Jyväskylä
- Donna C McCann, PhD, University of Southampton
- David McGuinness, MSci, University of Glasgow
- Hannu Oja, PhD, University of Jyväskylä
- **James Y Paton**, MD, University of Glasgow
- Antti Penttinen, PhD, University of Jyväskylä
- Seija Sandberg, MD, University College London
- Medical Research Council UK